Photoconductive Antenna for Terahertz waves PCA sales@dmphotonics.com

Photoconductive Antenna for Terahertz waves PCA sales@dmphotonics.com

buy online:
http://greyhawkoptics.com/index.php?cPath=35_76

More THz products:
Portable Terahertz Source
THz Spectrometer kit with Antenna
THz transmission setup
THz time domain spectrometer Pacifica fs1060pca
THz time domain spectrometer Pacifica fs780pca
THz detectors: Golay cell and LiTaO3 piroelectric detectors
Pacifica THz Time Domain Spectrometer – Trestles Pacifica
Terahertz Spectroscopic Radar Mobile System for Detection of Concealed Explosives
Generation of THz radiation using lithium niobate
Terahertz crystals (THz): ZnTe, GaAs, GaP, LiNbO3 – Wedge ZnTe
Silicon Viewports for THz radiation

SPIE DSS THz presentations
Fiber optic-based laser systems for terahertz frequency-comb spectroscopy
Yevhen Rutovytskyy, Kimberly Kaltenecker, Fahad A. Althowibi, Eric Donkor
1 May 2013 11:10 – 11:30 AM

Palm-size and real-time Terahertz imager, and its application to development of terahertz sources
Naoki Oda, Tsutomu Ishi, Seiji Kurashina, Takayuki Sudou, Takao Morimoto, Masaru Miyoshi, Tokuhito Sasaki, Taku Tsuboi, Takao Yamazaki
29 April 2013 9:10 – 9:30 AM

Emission and detection of terahertz radiation using two-dimensional plasmons in semiconductor nano-heterostructures for nondestructive evaluations
Taiichi Otsuji, Takayuki Watanabe, Stephane Albon Boubanga Tombet, Akira Satou, Victor Ryzhii, Vyacheslav V. Popov, Wojciech Knap
29 April 2013 1:50 – 2:10 PM

Optically switchable matematerials in the terahertz regime
Ekmel Ozbay, Mutlu Gokkavas
30 April 2013 3:40 – 4:00 PM

Graphene active plasmonic metamaterials for new types of terahertz lasers
Taiichi Otsuji, Takayuki Watanabe, Akira Satou, Viacheslav V. Popov, VIctor Ryzhii
30 April 2013 1:15 – 1:50 PM

Tunable terahertz plasmonic ring resonators
Mustafa Karabiyik, Nezih Pala
30 April 2013 8:55 – 9:15 AM

New modeling techniques for terahertz metamaterials
Mayer A. Landau
29 April 2013 4:30 – 4:50 PM

Ceramic photonic crystals for THz applications
Bradley T. Willis, Satya R. Ganti, S. K. Sundaram
30 April 2013 10:25 – 10:45 AM

Diffraction limit investigation with sub-wavelength pixels
Alain Bergeron, Marc Terroux, Linda Marchese, Denis G. Dufour, Loic Le Noc, Claude Chevalier
3 May 2013 2:10 – 2:30 PM

Transceiver array development for submillimeter-wave imaging radars
Ken B. Cooper, Theodore Reck, Cecile Jung-Kubiak, Choonsup Lee, Jose Siles, Robert Lin, Alejandro Peralta, Emmanuel Decrossas, Erich Schlecht, Goutam Chattopadhyay, Imran Mehdi
2 May 2013 11:10 – 11:30 AM

Single-photon detectors in the log-wavelength infrared through sub-millimeter-wave regions
Susumu Komiyama
2 May 2013 3:30 – 4:00 PM

THz-Raman: accessing molecular structure with Raman spectroscopy for identification, analysis and monitoring
Randy A. Heyler, James T. Carriere, Frank Havermeyer
30 April 2013 8:20 – 8:40 AM

Widely tunable THz sources and security applications
Kodo Kawase, Saroj R. S. R. Tripathi, Shin’ichiro Hayashi
30 April 2013 8:00 – 8:35 AM

Polar synthetic imaging
Jonathan George
30 April 2013 6:00 – 7:30 PM

Low-loss waveguides and devices for compact THz systems
Azizur Rahman, Mohammad Uthman, Anita Quadir, Namassivaye Kejalakshmy, Christos Markides, Christos Themistos
30 April 2013 2:25 – 3:00 PM

Detection of covered materials in the TDS-THz setup
Norbert Palka
29 April 2013 11:40 AM – 12:00 PM

Passive three-colour submillimetre-wave video camera
Arttu R. Luukanen, Leif Gronberg, Markus Gronholm, Mikko M. Leivo, Anssi Rautiainen, Hans Toivanen
2 May 2013 2:20 – 2:40 PM

Enabling technologies for mmw and THz imaging systems
Bryan Bothwell
2 May 2013 8:20 – 8:40 AM

Micromachined probes for characterization of submillimeter-wave on-wafer components
Robert M. Weikle II, N. Scott Barker, Arthur W. Lichtenberger, Matthew F. Bauwens

Thz RamanTM spectroscopy for explosives, chemical, and biological detection
James T. Carriere, Frank Havermeyer, Randy A. Heyler

Subterahertz resonance spectroscopy of biological macromolecules and cells
Tatiana Globus, Aaron Moyer, Boris L. Gelmont, Igor Sizov, Tatyana Khromova, Jerome P. Ferrance

Employing phase modulation and second harmonic nulling to eliminate interference fringes from the spectrum of a portable coherent frequency-domain THz spectrometer
Joseph R. Demers, K.K. Wong, Bryon Kasper

Widely tunable (1-20 THz) narrowband (100 GHz) THz source for spectroscopy and imaging

THz transmission and detection through glow discharge detectors
Hakan Altan, Kamil Cinar, Asaf Behzat ?ahin

Broadband THz generation and detection at 10-nm scale
Yanjun Ma, Mengchen Huang, ChungWung Bark, Chad Folkman, Chang-Beom Eom, Jeremy Levy

Frequency tunable narrowband THz time domain source
Masayoshi Tonouchi, Caihong Zhang, Yuri H. Avetisyan, Iwao Kawayama, Hiro Murakami

Antenna coupled detectors for 2D staring focal plane arrays
Michael A. Gritz, Leonard P. Chen, Robert Burkholder, Brian A. Lail, Borys P. Kolasa
3 May 2013 1:50 – 2:10 PM

8 comments

  1. > I would like to know what is the best photoconductive antenna detector for detecting pulsed THz waves whose peak frequency is arround 0.2 THz and the main frequency are below 1 THz. I am using an optical probe beam at 800 nm, 80 MHz, 40 mW.
    > Also, the antenna should be mounted on a 1 inche diameter wafer since I want to install it Inside a rotative mount since the THz polarization is at 45 degres. Also, the antenna should have to the back the hyperhemispheric Si lense.
    > What would be the best solution for me between the bowtie, logarithmic spiral, butterfly and strip line antenna?
    > May I have a quotation for it?

    For the spectral region < 1 THz a longer bow-tie antenna is appropriate.
    The spiral antenna cannot be used if you need a defined polarisation. The butterfly antenna also can be used but the polarisation direction is not good defined at this antenna because of the contact structure. The strip line antenna is not appropriate for lower frequencies because it is too short.

    PCA-180-05-10-800-h
    photoconductive antenna from bow-tie type,
    antenna length 180 μm, gap distance 5 μm,
    optical excitation wavelength 800 nm,
    mounted on a 25.4 mm diameter aluminium heat sink,
    adjusted hyperhemispherical silicon lens
    1 m long coaxial cable with BNC connector

  2. Pacifica fs1060pca THz spectrometer – request a quote
    http://www.dmphotonics.com/THz%20spectrometer%20with%201060%20nm%20fs%20laser/THz%20time%20domain%20spectrometer%20for%20transmission%20measurements%20using%20a%201060%20nm%20fs%20fiber%20laser.htm
    THz time domain spectrometer for transmission measurements using a fs fiber laser source. with mean optical power of > 120 mW, wavelength ~ 1060 nm, pulse duration < 120 fs and repetition rate ~ 80 MHz.

    consisting of:
    • fs fiber laser Tourmaline ( with mean optical power of > 120 mW, wavelength ~ 1060 nm, pulse duration < 120 fs and repetition rate ~ 80 MHz)
    • THz emitter and detector photoconductive antennas with aspheric focusing THz lenses with 50 mm THz beam focus length
    • Optics for laser beams
    • optical delay line for delay of 500 ps (<5 GHz resolution)
    • breadboard 600 mm x 450 mm x 50.8 mm with the adjusted and tested THz spectrometer. The THz antenna distance is 100 mm. The THz focus is on the midpoint between the antennas.
    • Laptop with software T3DS, complete electronics with pulse generator, amplifier and lock-in detector. The software allows measurement of THz pulse and calculates in-situ the THz spectrum. It includes the calibration procedures for 100 % transmittance and the calculation of the spectral transmittance and absorbance of a sample.
    • Instruction manual for the THz spectrometer and test report with the following data:
    – Supply voltage 110 .. 230 V
    – dynamic range > 60 dB
    – useful spectral region 0.05 to > 3 THz
    – scan range 500 ps (< 3 GHz resolution)
    – THz focus position 50 mm away from the antennas
    – Fast scan duration 10 s
    – Slow scan duration 8 min

    Optional: Spectrometer housing with closed sample box for nitrogen gas purging

    Optional: Additional set of emitter and detector antenna with aspheric collimating THz lenses for 12 mm THz beam diameter for replacement of the antennas with focusing THz lenses

    Lead time: 3 months (because of the lead time for the laser)

  3. Terahertz lens – sales@dmphotonics.com

    Researchers Develop New Lens For Terahertz Radiation

    Brown University engineers have devised a way to focus terahertz radiation using an array of stacked metal plates, which may prove useful for terahertz imaging or in next-generation data networks.

    Terahertz radiation is a relatively unexplored slice of the electromagnetic spectrum, but it holds the promise of countless new imaging applications as well as wireless communication networks with extremely high bandwidth. The problem is that there are few off-the-shelf components available for manipulating terahertz waves.

    Now, researchers from Brown University’s School of Engineering have developed a new type of lens for focusing terahertz radiation (which spans from about 100 to 10,000 GHz). The lens, made from an array of stacked metal plates with spaces between them, performs as well or better than existing terahertz lenses, and the architecture used to build the device could set the stage for a range of other terahertz components that don’t currently exist.

    The work was led by Rajind Mendis, assistant professor of engineering (research) at Brown, who worked with Dan Mittleman, professor of engineering at Brown. The work is described in the journal Nature Scientific Reports.

    “Any photonic system that uses terahertz – whether it’s in imaging, wireless communications or something else – will require lenses,” said Dan Mittleman, professor of engineering at Brown and the senior author on the new paper. “We wanted to look for new ways to focus terahertz radiation.”

    Most lenses use the refractive properties of a material to focus light energy. Eyeglasses, for example, use convex glass to bend visible light and focus it on a certain spot. But for this new terahertz lens, the properties of the materials used don’t matter as much as the way in which the materials are arranged.

    “It’s the architecture here that’s important,” Mendis said.

    The new device is made from 32 metal plates, each 100 microns thick, with a 1-millimeter space between each plate. The plates have semicircular notches of different sizes cut out of one edge, such that when stacked horizontally the notches form a three-dimensional divot on one side of the device. When a terahertz beam enters the input side of the device, slices of the beam travel through the spaces between the plates. The concave output side of the device bends the beam slices to varying degrees such that the slices are all focused on a certain point.

    Using the configuration developed for this new study, the researchers were able to focus a two-centimeter-diameter terahertz beam down to a four-millimeter spot. The radiation transmission through the device – the amount of radiation that makes it through the spaces as opposed to reflected back toward the source or dissipated inside the device – was about 80 percent. That’s significantly better than silicon lenses, which typically have a transmission loss of about 50 percent, and about the same as lenses made from Teflon.

    The new device has some advantages over existing Teflon lenses, however. In particular, by changing the spacing between the plates, the new device can be calibrated for specific terahertz wavelengths, something that isn’t possible with existing lenses.

    “That can be particularly interesting if you want to image things at one frequency and not at others,” Mittleman said. “One of the important things here is that this design offers you a versatility that a simple chunk of plastic with a curved surface doesn’t offer.”

    The work also suggests that the technique of using spaced metal plates to manipulate terahertz radiation could be useful in making other types of components that currently don’t exist. Since a metallic architecture mimics a plastic (a dielectric), this material technology is called "artificial dielectrics."

    “As much as anything else, this paper proves that the technology is feasible,” Mittleman said. “Now we can go and make devices that are totally new in the terahertz world.”

    The same technology could be used, Mendis said, to make a polarizing beam splitter for terahertz waves – a device that separates waves according to their polarization state. Such a device could be used to implement elementary logic gates for terahertz photonic systems, where the binary (one and zero) logic states are assigned to the two polarization states. That would be an essential component of a terahertz data network.

    “The spirit of this work is to develop a new technology for building terahertz components that might be alternatives to things that exist or that might be new,” Mittleman said. “That’s important for the terahertz field because there aren’t a lot of off-the-shelf components yet.”

    Other authors on the paper were Masaya Nagai (professor at Osaka University in Japan), Yiqiu Wang (undergraduate student at Rice University) and Nicholas Karl (doctoral student at Brown).

    The study was funded by the National Science Foundation and the Keck Foundation.

    SOURCE: Brown University
    http://www.rfglobalnet.com/doc/researchers-develop-new-lens-for-terahertz-radiation-0001?sectionCode=News&templateCode=Single&user=2395783&source=nl:45183&utm_source=et_6214342&utm_medium=email&utm_campaign=RFG_2016-03-17&utm_term=09595F1B-A9A5-4956-9957-BB0F339D25D2&utm_content=Researchers%2bDevelop%2bNew%2bLens%2bFor%2bTerahertz%2bRadiation

  4. High Power Components 1um PM products 1um Non-PM Products
    High Power In line 1064nm Isolator 2W CW or pulse PM Circulator (3 port, 4 port) 1×2(2×2) 1064nm Fused Coupler
    High Power In line 1064nm Isolator 3-20W CW or pulse PM Isolator 1064nm 3 Port Circulator
    High Power 1030nm, 1040nm,1080nm Isolator 1-10W Polarization beam splitter/Combiner 960~990/1020-1080nm Filter WDM
    850nm high power Isolator PM Filter WDM 1064nm bandpass filter (2nm,5nm)
    980nm high Power isolator 1×2,2×2, 1×3, 1×4,1×8,1×16 PM Filter Splitter 1030nm bandpass filter(2nm)
    High Power Collimator (5/10/20W) In Line Polarizer 1064nm Isolator (300mW,500mW)
    Multimode Pump Protector 10W In Line PM Faraday Rotator 1064nm Faraday mirror
    (2+1)x1 Multimode Pump Combiner PM Fiber Collimator 1064nm Fiber mirror
      PM Fiber Faraday Mirror 1064nm Collimator
    PM Fiber Mirror 1064nm Variable Optical Attenuator (VOA)
      PM Fiber Variable Optical Attenuator 1064nm 1×2 Optical Switch
      PM Optical Switch 980/1064nm Fused WDM
      PM Fiber Isolator/ WDM Hybrid (PM IWDM) 980/1064nm Isolator WDM Hybrid
      PM Tap /Isolator Hybrid (PM TAPI) 1064nm TAP ISOLATOR
      PM Fiber Tap/Isolator/WDM Hybrid Device 1064nm Isolator (300mW,500mW)
      1×2, 2×2 PM fused Coupler 1064nm patchcord
      PM Fused WDM coupler(980/1064nm, 980/1030nm )  
      PM Fiber Patchcord

  5. Cutting Grooves In GaAs Increases THz Emission – request a quote for GaAs at sales@dmphotonics.com
    18th September 2015
    Japanese group show how femtosecond-laser ablation could close the 'terahertz gap'

    Sitting between infrared and microwave radiation, the terahertz (THz) part of the electromagnetic spectrum has been largely unused due to a lack of cheap ways to mass-produce THz-based devices.

    Now research published in Optics Letters by the Femtosecond Spectroscopy Unit at the Okinawa Institute of Science and Technology Graduate University (OIST) in Japan, suggests a solution to the 'terahertz gap' might lie in altering the microstructure of THz emission GaAs-based devices.

    THz radiation can penetrate fabrics, paper, cardboard, plastics, wood, and ceramics. Many materials have a unique 'fingerprint' in the THz band allowing their easy identification with THz scanners. Moreover, THz radiation is safe for live tissues and DNA, due to its non-ionising properties. Because of these properties, many believe that being able to exploit THz wavelengths could open up new approaches to medical imaging, detection of chemicals such as explosives, and even data communication.

    Today, however, generating THz waves is difficult since the frequency is too high for conventional radio transmitters, but too low for optical transmitters, like the majority of lasers. One of the most frequently used THz emitters is a photoconductive antenna, comprising two electric contacts and a thin film of semiconductor, often GaAs, between them. When the antenna is exposed to a short pulse from a laser, the photons excite electrons in the semiconductor, and a short burst of THz radiation is produced. Thus the energy of the laser beam is transformed into a THz electro-magnetic wave.

    OIST researchers have showed that the micro-structure of the semiconductor surface plays an important role in this process. Femtosecond-laser-ablation, in which the material is exposed to ultrashort bursts of high energy, creates micrometre-scale grooves and ripples (pictured above) on the surface of GaAs. "The light gets trapped in these ripples", says Athanasios Margiolakis, a Special Research Student at OIST. Since more light is absorbed by the ablated material, the efficiency of THz emission, given a sufficiently powerful laser, increases by 65 percent.

    Other properties of the material change as well. For example, ablated GaAs shows only a third of the electrical current of non-ablated GaAs. "We observe counter-intuitive phenomena," the researchers write, "One generally expects that the material showing the higher photocurrent would give the best THz emitter." They explain this phenomenon by shorter carrier lifetimes. That is, electrons in ablated samples return to non-agitated states much faster than in control samples.

    Julien Madéo, part of the OIST team, says: "Femtosecond-laser ablation allows us to engineer the properties of materials and to overcome their intrinsic limitations, leading, for example, to near 100 percent photon absorption as well as broader absorption bandwidth, control of the electron concentration and lifetime".

    The researchers believe that the technique is a fast, lower-cost alternative to existing methods of manufacturing materials for THz applications.

    'Ultrafast properties of femtosecond-laser-ablated GaAs and its application to terahertz optoelectronics', by Julien Madéo et al; Optics Letters, Vol. 40, issue 14 (2015)

  6. We are interested in a THz generation & detection kit that we can drive with our existing Mai-Tai Ti: Sa 800 nm pulsed laser and would like to enquire whether you can provide this.

    We would require at least 3 THz of bandwidth and ideally polarization capabilities both at the generation & detection side. Also, at some point we may also require two or three axes scanning capabilities at the detection side (an area of 0.5mmx0.5mm or greater with a resolution of 50 microns or better). Would it be possible to include the scanning functionality in the existing kit or add it as an extra module in the near future? 

    Due to funding restrictions, we are required to make decision as soon as possible, hence a quick response would be very much appreciated.

    Dr Nikitas Papasimakis

    email: np1v09@soton.ac.uk
    tel: +44 23 8059 3085
    Research Lecturer

    Member of groups
    Nanophotonics & Meta-materials
    There are 90 publications in ORC database for 'Papasimakis, N.'

    6982 —  T.A.Raybould, V.A.Fedotov, N.Papasimakis, I.Youngs, N.I.Zheludev
    Interrogating nanoparticles with focused doughnut pulses
    International Workshop on Optical Wave & Waveguide Theory and Numerical Modelling (OWTNM 2015) City University, London 17-18 Apr 2015 
    [Abstract]    [ePrint: 376571]
    6825 —  N.Papasimakis, S.Mailis, C.C.Huang, F.Al-Saab, D.W.Hewak, Z.Luo, Z.X.Shen
    Strain engineering in graphene by laser irradiation
    Applied Physics Letters 2015 Vol.106 pp.061904 
    [Abstract]    [ePrint: 374273]
    6805 —  T.Raybould, V.A.Fedotov, N.Papasimakis, I.J.Youngs, N.I.Zheludev
    Flying Electromagnetic Toroids:propagation properties and light-matter interactions
    5th International Topical Meeting on Nanophotonics and Metamaterials (NANOMETA '15) Seefield, Austria 5-8 Jan 2015 
    [Abstract]    [ePrint: 375250]
    6949 —  M.Abb, Y.Wang, N.Papasimakis, C.H.de Groot, O.L.Muskens
    Surface-Enhanced Infrared Spectroscopy Using Metal Oxide Plasmonic Antenna Arrays
    Nano Letters 2014 Vol.14(1) pp.346-352  
    6557 —  Y.Wang, M.Abb, N.Papasimakis, C.H.de Groot, O.L.Muskens
    Surface-Enhanced Infrared Spectroscopy using ultra-compact indium tin oxide (ITO) sensor arrays
    Conference on Lasers and Electro-Optics (CLEO): Science and Innovations San Jose, US 8-13 Jun 2014 
    [Abstract]    [ePrint: 366950]
    6474 —  E.Atmatzakis, N.Papasimakis, V.A.Fedotov, N.I.Zheludev
    Giant Kerr rotation enhancement in hybrid magneto-plasmonic metamaterials
    Metamaterials '14 Copenhagen, Denmark 25-30 Aug 2014  
    6440 —  N.Papasimakis, E.Atmatzakis, A.Tsiatmas, V.A.Fedotov, B.Luk'yanchuk, F.J.García de Abajo, N.I.Zheludev
    Controlling magnetism at the nanoscale with metamaterials
    SPIE Photonics Europe Brussels, Belgium 14-17 Apr 2014 (Invited)
    [Abstract]    [ePrint: 375903]
    6430 —  T.A.Raybould, N.Papasimakis, V.A.Fedotov, I.Youngs, N.I.Zheludev
    Interaction of Flying Electromagnetic Doughnut with Nanostructures
    CLEO '14 San Jose, CA, USA 8-13 Jun 2014 (Poster) 
    [Abstract]    [ePrint: 368686]
    6429 —  V.A.Fedotov, J.Wallauer, M.Walther, N.Papasimakis, N.I.Zheludev, E.Atmatzakis
    Wavevector selective surface
    CLEO '14 San Jose, CA, USA 8-13 Jun 2014 
    [Abstract]    [ePrint: 368687]
    6245 —  E.Atmatzakis, N.Papasimakis, V.Fedotov, N.I.Zheludev
    Giant Kerr rotation enhancement in magneto-plasmonic metamaterials
    CLEO '14 San Jose, CA 8-13 Jun 2014 
    [Abstract]    [ePrint: 368752]
    6218 —  A.Tsiatmas, E.Atmatzakis, N.Papasimakis, V.Fedotov, B.Luk'yanchuk, N.I.Zheludev, F.J.García de Abajo
    Optical generation of intense ultrashort magnetic pulses at the nanoscale
    New Journal of Physics 2013 Vol.15 pp.113035 
    [Abstract]    [ePrint: 369182]
    6200 —  N.Papasimakis, S.Thongrattanasiri, N.I.Zheludev, F.J.García de Abajo
    The magnetic response of graphene split-ring metamaterials
    Light: Science & Applications 2013 Vol.2(e78) pp.1-4 
    [Abstract]    [ePrint: 364379]
    5799 —  E.Atmatzakis, A.Tsiatmus, N.Papasimakis, V.A.Fedotov, B.Luk'yanchuk, F.J.García de Abajo, N.I.Zheludev
    Tesla magnetic pulses by optical excitation of plasmonic nanostructures
    IPS Meeting 2013 Singapore 4-6 March 2013 (Invited)  
    5726 —  N.Papasimakis, S.Thongrattanasiri, N.I.Zheludev, F.J.García de Abajo
    Magnetic graphene metamaterial
    CLEO/Europe-IQEC 2013 Munich 12-16 May 2013 
    [Abstract]    [ePrint: 375987]
    5725 —  E.Atmatzakis, A.Tsiatmas, N.Papasimakis, V.Fedotov, B.Luk'yanchuk, F.J.García de Abajo, N.I.Zheludev
    Optical excitation of unipolar Tesla magnetic pulses in plasmonic nanostructures
    CLEO/Europe-IQEC 2013 Munich 12-16 May 2013 
    [Abstract]    [ePrint: 375988]
    5676 —  N.Papasimakis, S.Thongrattanasiri, N.I.Zheludev, F.J.García de Abajo
    Magnetic graphene metamaterial
    NanoMeta 2013 Seefeld, Austria 3-6 Jan 2013 SUN2s.5 
    [Abstract]    [ePrint: 375999]
    5675 —  E.Atmatzakis, A.Tsiatmas, N.Papasimakis, V.A.Fedotov, B.Luk'yanchuk, F.J.García de Abajo, N.I.Zheludev
    Generating Tesla magnetic pulses in plasmonic nanostructures
    NanoMeta 2013 Seefeld Austria 3-6 Jan 2013 SUN3s 
    [Abstract]    [ePrint: 376000]
    6027 —  A.E.Nikolaenko, N.Papasimakis, E.Atmatzakis, Z.Luo, Z.X.Shen, F.De Angelis, S.A.Boden, E.Di Fabrizio, N.I.Zheludev
    Nonlinear graphene metamaterial
    Applied Physics Letters 2012 Vol.100(18) pp.181109 
    [Abstract]    [ePrint: 356016]
    6020 —  S.Savo, N.Papasimakis, N.I.Zheludev
    Localization of electromagnetic fields in disordered metamaterials
    Physical Review B 2012 Vol.85(12) pp.121104 
    [Abstract]    [ePrint: 356001]
    5500 —  J.Zhang, J.-Y.Ou, N.Papasimakis, K.F.MacDonald, N.I.Zheludev, Y.Chen
    Control of metal color using surface relief metamaterial nanostructuring
    SPIE Newsroom 22 Mar 2012 
    [Abstract]    [ePrint: 359721]
    5303 —  A.E.Nikolaenko, N.Papasimakis, A.Chipouline, F.De Angelis, E.Di Fabrizio, N.I.Zheludev
    THz bandwidth optical switching with carbon nanotube metamaterial
    Optics Express 2012 Vol.20(6) pp.6068-6079 
    [Abstract]    [ePrint: 336494]
    5298 —  A.E.Nikolaenko, E.Atmatzakis, N.Papasimakis, Z.Luo, Z.X.Shen, S.A.Boden, P.Ashburn, N.I.Zheludev
    Terahertz bandwidth optical nonlinearity of graphene metamaterial
    CLEO/QELS 2012 San Jose 6-11 May 2012 QTh3H.5 
    [Abstract]  
    5297 —  T.S.Kao, T.Roy, M.Ren, N.Papasimakis, F.De Angelis, E.Di Fabrizio, A.E.Nikolaenko, N.I.Zheludev
    Light localization linear and nonlinear properties of disordered plasmonic metamaterials
    SPIE Photonics Europe 2012 Brussels 16-19 April 2012 Poster presentation  
    5296 —  A.E.Nikolaenko, E.Atmatzakis, N.Papasimakis, Z.Luo, Z.X.Shen, F.De Angelis, E.Di Fabrizio, N.I.Zheludev
    Ultrafast nonlinearity of graphene metamaterial
    SPIE Photonics Europe 2012 Brussels 16-19 April 2012 (Poster)  
    6388 —  S.Savo, N.Papasimakis, N.I.Zheludev
    Light Localization in Disordered Metamaterials 
    CLEO/QELS '11 Baltimore, Maryland, US 1-6 May 2011  
    5574 —  S.Savo, N.Papasimakis, N.I.Zheludev
    Light Localization in Disordered Metamaterials
    European Quantum Electronics Conference (EQEC) Munich May 22 2011 EJ5.5 
    [Abstract]    [ePrint: 341549]
    5573 —  T.Kaelberer, N.Papasimakis, V.Savinov, A.V.Rogacheva, D.P.Tsai, N.I.Zheludev
    Demonstrating Elusive Toroidal Dipolar Response in Metamaterials
    European Quantum Electronics Conference (EQEC) Munich May 22 2011 EJ5.6 
    [Abstract]    [ePrint: 341551]
    5238 —  V.A.Fedotov, T.Kaelberer, N.Papasimakis, V.Savinov, A.V.Rogacheva, N.I.Zheludev
    Toroidal dipolar response in metamaterials: illusion or reality
    The Fifth International Congress on Advanced Electromagnetic Materials in Microwaves and Optics: Metamaterials 2011 Barcelona 10-15 Oct 2011 (Invited)  
    5222 —  J.Zhang, J.-Y.Ou, N.Papasimakis, Y.Chen, K.F.MacDonald, N.I.Zheludev
    Continuous metal plasmonic frequency selective surfaces
    Optics Letters 2011 Vol.19(23) pp.23279-23285 
    [Abstract]    [ePrint: 202363]
    5176 —  S.Savo, N.Papasimakis, S.Jenkins, J.Ruostekoski, N.I.Zheludev
    Fano resonance and light localization in disordered metamaterials
    The Fifth International Congress on Advanced Electromagnetic Materials in Microwaves and Optics: Metamaterials 2011 Barcelona 10-15 Oct 2011 MCPCA88828 (Invited)
    [Abstract]    [ePrint: 341213]
    4959 —  K.F.MacDonald, M.Ren, J.Zhang, B.Gholipour, N.Papasimakis, A.E.Nikolaenko, Z.X.Shen, D.Hewak, N.I.Zheludev
    Advances in nonlinear and switchable photonic metamaterials
    5th International Conference on Surface Plasmon Photonics (SPP5) Busan, S. Korea 15-20 May 2011 (Invited)
    [Abstract]    [ePrint: 343053]
    4943 —  N.I.Zheludev, E.Plum, V.A.Fedotov, N.Papasimakis, S.Savo
    Nanostructured photonic metamaterials: functionalities underpinned by metamolecular interactions
    Villa Conference on Interactions Among Nanostructures Las Vegas 21-25 Apr 2011 (Invited)
    [Abstract]    [ePrint: 343060]
    4915 —  J.Zhang, J.Y.Ou, N.Papasimakis, K.F.MacDonald, N.I.Zheludev
    Intaglio and bas-relief metamaterials: Controlling the colour of metals
    NanoMeta 2011 Seefeld, Austria 3-6 Jan 2011 
    [Abstract]    [ePrint: 343067]
    4909 —  N.Papasimakis, A.E.Nikolaenko, Z.Luo, Z.X.Shen, F.De Angelis, E.Di Fabrizio, S.Boden, T.Uchino, N.I.Zheludev
    Tuning metamaterial properties by a single-layer of graphene
    NanoMeta 2011 Seefeld Austria 3-6 Jan 2011 
    [Abstract]    [ePrint: 343138]
    4896 —  T.Kaelberer, V.A.Fedotov, N.Papasimakis, A.V.Rogacheva, N.I.Zheludev
    Metamaterials: demonstrating toroidal moment in the frame of classical electrodynamics
    NanoMeta 2011 Seefeld, Austria 3-6 Jan 2011 NM96 (Invited)
    [Abstract]    [ePrint: 343141]
    6925 —  N.Papasimakis, F.Pallikari
    Correlated and uncorrelated heart rate fluctuations during relaxing visualization
    EPL (Proceedings) 2010 Vol.90(4) pp.48003 
    [Abstract]  
    6374 —  Z.X.Shen, Z.Luo, F.De Angelis, E.Di Fabrizio, N.Papasimakis, A.E.Nikolaenko, N.I.Zheludev
    Graphene as a metamaterial superstrate
    Recent Advances in Graphene and Related Materials Singapore 1-6 Aug 2010  
    4932 —  T.Kaelberer, V.A.Fedotov, N.Papasimakis, D.P.Tsai, N.I.Zheludev
    Toroidal dipolar response in a metamaterial
    Science 2010 Vol.330(6010) pp.1510-1512 
    [Abstract]    [ePrint: 176849]
    4811 —  S.Jenkins, N.Papasimakis, N.I.Zheludev, J.Ruostekoski
    Collective dynamics in photonic meta-molecules: From light localization to the lasing spaser
    Fourth International Congress on Advanced Electromagnetic Materials in Microwaves and Optics: Metamaterials 2010 Karlsruhe 13-16 Sep 2010  
    4810 —  N.Papasimakis, Z.Luo, X.Shen, F.De Angelis, E.Di Fabrizio, A.E.Nikolaenko, N.I.Zheludev
    Graphene superstrates for metamaterials
    Fourth International Congress on Advanced Electromagnetic Materials in Microwaves and Optics: Metamaterials 2010 Karlsruhe 13-16 Sep 2010 
    [Abstract]    [ePrint: 164137]
    4756 —  T.Kaelberer, N.Papasimakis, V.A.Fedotov, N.I.Zheludev
    Toroidal moments in electromagnetic metamaterials
    Photon 10/QEP-19 Southampton 23-26 Aug 2010 
    [Abstract]    [ePrint: 340464]
    4735 —  A.E.Nikolaenko, F.De Angelis, S.A.Boden, N.Papasimakis, P.Ashburn, E.Di Fabrizio, N.I.Zheludev
    Carbon nanotubes in a photonic metamaterial
    Physical Review Letters 2010 Vol.104(15) pp.153902 
    [Abstract]    [ePrint: 178819]
    4734 —  N.Papasimakis, Z.Luo, Z.X.Shen, F.De Angelis, E.Di Fabrizio, A.E.Nikolaenko, N.I.Zheludev
    Graphene in a photonic metamaterial
    Optics Express 2010 Vol.18(8) pp.8353-8359 
    [Abstract]    [ePrint: 179421]
    4728 —  Z.Luo, Z.Shen, N.Papasimakis, A.E.Nikolaenko, F.De Angelis, E.Di Fabrizio, N.I.Zheludev
    Graphene in a plasmonic metamaterial
    SPIE Optics & Photonics '10 San Diego 1-5 Aug 2010 7757-132 (Invited)  
    4725 —  A.E.Nikolaenko, F.De Angelis, S.A.Boden, N.Papasimakis, P.Ashburn, E.M.Di Fabrizio, N.I.Zheludev
    Carbon nanotubes in a photonic metamaterial: Giant ultrafast nonlinearity through plasmon-exciton coupling
    CLEO/QELS 2010 San Jose 16-21 May 2010 QTuD5 
    [Abstract]    [ePrint: 362821]
    4664 —  N.Papasimakis, V.A.Fedotov, N.I.Zheludev
    Surface waves in metamaterial lattices: High-Q resonances and Wood's anomalies
    SOIE Photonics Europe Brussels 12-16 Apr 2010  
    4645 —  N.I.Zheludev, A.E.Nikolaenko, F.De Angelis, S.A.Boden, N.Papasimakis, P.Ashburn, E.M.Di Fabrizio
    Carbon nanotubes in photonic metamaterials
    SPIE Photonics Europe 2010 Brussels 12-16 April 2010 see Physical Review Letters eP270864 (Invited)  
    4638 —  T.Kaelberer, N.Papasimakis, V.A.Fedotov, N.I.Zheludev
    Metamaterials: the search for toroidal moments
    SPIE Photonics Europe Brussels 12-16 Apr 2010 7711-31  
    4531 —  N.Papasimakis, V.A.Fedotov, N.I.Zheludev
    Fano resonances and collective effects in metamaterials
    META '10 Cairo Egypt 22-25 Feb 2010 (Invited)
    [Abstract]    [ePrint: 340470]
    4509 —  N.Papasimakis, E.Plum, V.A.Fedotov, N.I.Zheludev
    Mimicking EIT BEC ferromagnetism the Mössbauer and Bunn effects in photonic metamaterials
    International Conference on Materials for Advanced Technologies (ICMAT 2009) Singapore 28 Jun – 3 Jul 2010 (Invited)
    [Abstract]    [ePrint: 340468]
    4419 —  V.A.Fedotov, N.Papasimakis, E.Plum, A.Bitzer, M.Walther, P.Kuo, D.P.Tsai, N.I.Zheludev
    Spectral collapse in ensembles of meta-molecules
    Physical Review Letters 2010 Vol.104(22) pp.223901 
    [Abstract]    [ePrint: 176481]
    4573 —  N.Papasimakis
    Trapped-modes, slow light and collective resonances in metamaterials
    PhD Thesis – 2009 
    [Abstract]    [ePrint: 76240]
    4550 —  N.Papasimakis, V.A.Fedotov, N.I.Zheludev
    Coherent metamaterials: from "optical ferromagnetism" to the lasing spaser
    CLEO/IQEC 2009 Baltimore, Maryland, USA 31 May – 05 Jun 2009 (Invited)
    [Abstract]    [ePrint: 76261]
    4515 —  N.Papasimakis, V.A.Fedotov, Y.H.Fu, D.P.Tsai, N.I.Zheludev
    Coherent and incoherent metamaterials and order-disorder transitions
    Physical Review B 2009 Vol.80 pp.041102(R) 
    [Abstract]    [ePrint: 78866]
    4514 —  N.Papasimakis, N.I.Zheludev
    Metamaterial-induced transparency: sharp fano resonances and slow light
    OPN Optics & Photonics news 2009 Vol.20(10) pp.22 
    [Abstract]    [ePrint: 78915]
    4480 —  N.Papasimakis, V.A.Fedotov, K.Marinov, N.I.Zheludev
    Gyrotropy of a metamolecule: wire on a torus
    Physical Review Letters 2009 Vol.103(9) pp.093901 
    [Abstract]    [ePrint: 78869]
    4470 —  N.Papasimakis, V.A.Fedotov, Y.H.Fu, D.P.Tsai, N.I.Zheludev
    Coherent meta-magnetics: collective resonances and disorder-induced transitions
    ICO Photonics 2009 Delphi Greece 7-9 Oct 2009 
    [Abstract]    [ePrint: 78944]
    4451 —  N.I.Zheludev, V.A.Fedotov, N.Papasimakis, E.Plum, J.H.Shi
    Coherent metamaterials as a platform for passive and gain-assisted photonic devices
    MRS '09 Materials Research Society Fall Meeting Boston 30 Nov-4 Dec 2009 EE4.1 (Invited)
    [Abstract]    [ePrint: 76273]
    4436 —  N.Papasimakis, Y.H.Fu, V.A.Fedotov, S.L.Prosvirnin, D.P.Tsai, N.I.Zheludev
    Metamaterial with polarization and direction insensitive resonant transmission response mimicking electromagnetically induced transparency
    Applied Physics Letters 2009 Vol.94(21) pp.211902 
    [Abstract]    [ePrint: 78870]
    4390 —  N.I.Zheludev, V.Fedotov, E.Plum, N.Papasimakis
    Coherent Metamaterials
    Metamaterials Congress 2009 Queen Mary University of London 30 Aug – 4 Sep 2009 Keynote (Invited)
    [Abstract]    [ePrint: 78974]
    4361 —  V.A.Fedotov, N.Papasimakis, A.Bitzer, M.Walther, N.I.Zheludev
    Metamaterial analogue of the Mossbauer effect
    CLEO/Europe-EQEC 2009 Munich 14-19 Jun 2009 EJ3.2 
    [Abstract]    [ePrint: 160079]
    4259 —  N.Papasimakis, V.A.Fedotov, N.I.Zheludev
    Coherent and incoherent metamaterials
    2nd European Topical Meeting on Nanophotonics and Metamaterials, NanoMeta 2009 Seefeld, Austria 5-8 Jan 2009 (Invited)
    [Abstract]    [ePrint: 65799]
    4239 —  N.I.Zheludev, S.L.Prosvirnin, N.Papasimakis, V.A.Fedotov
    Lasing spaser
    Nature Photonics 2008 Vol.2(6) pp.351-354 
    [Abstract]    [ePrint: 65791]
    4226 —  N.I.Zheludev, S.L.Prosvirnin, N.Papasimakis, V.A.Fedotov
    Lasing spaser
    SPIE Plasmonics: Metallic Nanostructures and Their Optical Properties VI San Diego 10-13 Aug 2008 (Invited)    [ePrint: 76305]
    4222 —  N.Papasimakis, K.Marinov, V.A.Fedotov, A.D.Boardman, N.I.Zheludev
    Testing the controversies of toroidal electrodynamics using metamaterials
    Plasmonics & Metamaterials: META '08 Rochester NY 20-23 Oct 2008 
    [Abstract]    [ePrint: 65529]
    4202 —  V.A.Fedotov, N.Papasimakis, E.Plum, S.L.Prosvirnin, N.I.Zheludev
    Metamaterials enter the physics playground: from EIT to lasing spaser
    2nd International Conference on Advanced Electromagnetic Materials in Microwaves and Optics (Metamaterials 2008) Pamplona, Spain 23-26 Sep 2008 (Invited)
    [Abstract]    [ePrint: 65473]
    4184 —  N.I.Zheludev, V.A.Fedotov, N.Papasimakis, E.Plum, S.L.Prosvirnin
    Close-mode resonances in meta-materials and lasing spaser
    Photonics Europe Strasbourg 7-11 April 2008 (Invited)    [ePrint: 76316]
    4130 —  N.I.Zheludev, V.A.Fedotov, N.Papasimakis, S.L.Prosvirnin
    Coherent metamaterials and the lasing spaser
    QEP-18 Edinburgh 26-29 Aug 2008 (Poster) 
    [Abstract]    [ePrint: 63361]
    4129 —  N.Papasimakis, K.Marinov, V.A.Fedotov, N.I.Zheludev, A.D.Boardman
    Optical activity in toroidal metamaterials
    QEP-18 Edinburgh 26-29 Aug 2008 
    [Abstract]    [ePrint: 63362]
    4117 —  N.I.Zheludev, S.L.Prosvirnin, N.Papasimakis, V.A.Fedotov
    Coherent meta-materials and the lasing spaser
    IEEE COMCAS 2008 Tel Aviv 13-14 May 2008 (Invited)
    [Abstract]    [ePrint: 65537]
    4108 —  N.Papasimakis, V.A.Fedotov, N.I.Zheludev, S.L.Prosvirnin
    Metamaterial analog of electromagnetically induced transparency
    Physical Review Letters 2008 Vol.101(25) pp.253903 
    [Abstract]    [ePrint: 65846]
    4104 —  N.Papasimakis, V.A.Fedotov, N.I.Zheludev, S.Prosvirnin
    Long pulse delays; A planar metamaterial analog of EIT
    6th International Workshop on Nanophotonics Taipei 11 March 2008 (Invited)
    [Abstract]    [ePrint: 65538]
    4102 —  N.I.Zheludev, S.Prosvirnin, N.Papasimakis, V.A.Fedotov
    Coherent meta-materials and the lasing spaser
    6th International Workshop on Nanophotonics Taipei, Taiwan 11 March 2008 (Invited)
    [Abstract]    [ePrint: 52036]
    4100 —  N.Papasimakis, V.A.Fedotov, S.L.Prosvirnin, N.I.Zheludev
    Slow light in "zero thickness" metamaterials
    Slow and Fast Light 2008 Boston 13-16 Jul 2008 
    [Abstract]    [ePrint: 63366]
    3993 —  V.A.Fedotov, M.Rose, S.L.Prosvirnin, N.Papasimakis, N.I.Zheludev
    Sharp trapped-mode resonances in planar metamaterials with a broken structural symmetry
    Physical Review Letters 2007 Vol.99(14) pp.147401 
    [Abstract]    [ePrint: 50204]
    3905 —  N.Papasimakis, V.A.Fedotov, A.S.Schwanecke, N.I.Zheludev, F.J.García de Abajo
    Enhanced microwave transmission through quasicrystal hole arrays
    Applied Physics Letters 2007 Vol.91(8) pp.081503 
    [Abstract]    [ePrint: 49808]
    3841 —  N.I.Zheludev, V.A.Fedotov, M.Rose, N.Papasimakis, S.L.Prosvirnin
    Chirality in photonic meta-materials
    SPIE Optics and Photonics Congress San Diego 26-30 Aug 2007 (Keynote) (Invited)    [ePrint: 76358]
    3803 —  N.I.Zheludev, V.Fedotov, A.Schwanecke, E.Plum, N.Papasimakis, K.Marinov
    Plasmon resonances in photonic chiral meta-materials
    Frontiers in Optics (FiO) 2007 San Jose 16-20 Sep 2007 (Invited)
    [Abstract]    [ePrint: 57746]
    3750 —  V.A.Fedotov, M.Rose, N.Papasimakis, N.I.Zheludev, S.L.Prosvirnin
    Achieving sharp resonances in metamaterials through symmetry breaking
    CLEO-Europe/IQEC 2007 Munich 17-22 Jun 2007 JSII4-5-FRI 
    [Abstract]    [ePrint: 47793]
    3749 —  N.Papasimakis, V.A.Fedotov, N.I.Zheludev, S.L.Prosvirnin
    Long pulse delays in thin metamaterial slabs
    CLEO-Europe/QELS 2007 Munich 17-22 Jun 2007 JSII4-3-FRI 
    [Abstract]    [ePrint: 47794]
    3689 —  F.M.Huang, A.Schwanecke, N.Papasimakis, Y.Chen, F.J.García de Abajo, N.I.Zheludev
    Far-field subwavelength focusing and extraordinary transmission of light by a quasi-periodic array of nano-holes
    Metamaterials 2007: First International Congress on Advanced Electromagnetic Materials in Microwaves and Optics Rome, Italy 22 – 26 Oct 2007 (Invited)
    [Abstract]    [ePrint: 57747]
    3633 —  N.Papasimakis, V.A.Fedotov, S.L.Prosvirnin, N.I.Zheludev
    Metamaterial analog of electromagnetically induced transparency
    Photonic Metamaterials: From Random to Periodic Jackson Hole, Wyoming 4-7 Jun 2007    [ePrint: 76378]
    3595 —  N.Papasimakis, V.A.Fedotov, N.I.Zheludev, S.L.Prosvirnin
    "Slow" light in media of "zero" dimension
    CLEO/QELS 2007 Baltimore 6-11 May 2007 QMG1 
    [Abstract]    [ePrint: 46119]
    3592 —  V.A.Fedotov, M.Rose, N.Papasimakis, S.L.Prosvirnin, N.I.Zheludev
    Achieving sharp resonances in metamaterials via engaging 'closed-modes'
    CLEO/QELS 2007 Baltimore 6-11 May 2007 QWH4 
    [Abstract]    [ePrint: 46122]
    3578 —  N.Papasimakis, V.A.Fedotov, S.L.Prosvirnin, N.I.Zheludev
    Slow light in metamaterials
    Nanometa 2007 Seefeld, Tirol, Austria 8-11 Jan 2007 (Poster) 
    [Abstract]    [ePrint: 46131]
    814P —  F.M.Huang, A.S.Schwanecke, N.Papasimakis, Y.Chen, F.J.García de Abajo, N.I.Zheludev
    Quasi-periodic arrays of subwavelength holes in a metal screen: Self-imaging in the near-field and far-field extraordinary transmission
    9th International conference on near-field optics, nanophotonics and related techniques (NFO-9) Lausanne, Switzerland 10 – 15 Sep 2006    [ePrint: 70964]
    803P —  F.J.García de Abajo, V.A.Fedotov, N.Papasimakis, A.S.Schwanecke, Y.Chen, N.I.Zheludev
    Extraordinary transmission through planar quasicrystal
    QEP-17 at Photon06 Manchester, UK 4 – 7 Sep 2006 
    [Abstract]    [ePrint: 57757]
    799P —  F.J.García de Abajo, Y.Chen, V.A.Fedotov, N.Papasimakis, A.S.Schwanecke, N.I.Zheludev
    Extraordinary light transmission through quasicrystal arrays of holes in a metal film
    SPIE Optics and Photonics 2006 Complex Photonic Media (NP201), San Diego, CA, USA 13 – 17 Aug 2006    [ePrint: 70969]
    789P —  F.J.García de Abajo, Y.Chen, V.A.Fedotov, N.Papasimakis, A.S.Schwanecke, N.I.Zheludev
    Extraordinary light transmission through quasicrystal arrays of holes in a metal film
    Photonic Metamaterials: From Random to Periodic Grand Island, The Bahamas 5 – 8 Jun 2006    [ePrint: 70979]
    780P —  A.S.Schwanecke, N.Papasimakis, V.A.Fedotov, F.M.Huang, Y.Chen, F.J.García de Abajo, N.I.Zheludev
    "Invisible" quasi-periodic array of subwavelength apertures in metal screen
    Nanophotonics Topical Meeting (NANO) at IPRA/NANO OSA Collocated Topical Meetings Uncasville, CT, USA 24 – 28 Apr 2006    [ePrint: 70988]

  7. Terahertz products from Del Mar Photonics
    Terahertz crystals – ZnTe – GaP
    http://www.delmarphotonics.com/Terahertz/Terahertz-crystals-ZnTe-GaP.htm

    Del Mar Photonics supply variety of crystals for THz generation, including ZnTe, GaP, GaSe, LiNbO3 and others
    http://femtosecondsystems.com/ZnTe-crystal/ZnTe-crystal.htm

    Del Mar Photonics supply variety of crystals for THz generation, including ZnTe, GaP, GaSe, LiNbO3 and others
    http://dmphotonics.com/ZnTe-crystal/ZnTe-crystal.htm

    Customer wrote: We want to generate THz wave in these crystals with femtosecond amplified laser beam @ 800nm.
    We need to pump the crystal with tilted IR pulse to generate a THz beam in the orthogonal direction of the end side.

    The following crystals are used:
    Stoichiometric MgO(0.6%):LiNBO3 Y-cut 5 x 5 x 9.81 mm
    5 x 5 mm^2 laser grade polished, with the end side cut at
    63° and AR coating at 800nm on the both sides.
    Type: prism
    Material: Stoichiometric MgO(0.6%):LiNBO3
    Dimensions: 5 mm x 5 mm x 9.81 mm
    Coating: AR coating at 800nm on the both sides
    Part number: MgO(0.6%): LiNbO3_5_5_9.83 – request a quote sales@dmphotonics.com
    http://www.dmphotonics.com/LiNbO3-THz-generation/Generation%20of%20THz%20radiation%20using%20bulk,%20periodically%20and%20aperiodically%20poled%20lithium%20niobate.htm

    Terahertz crystals from Del Mar Photonics sales@dmphotonics.com 
    Terahertz crystals from Del Mar Photonics sales@dmphotonics.com

    ZnTe crystal, 10x10x0.5 mm, 110-cut
    [CR-ZnTe-10-10-0.5]        
    http://greyhawkoptics.com/product_info.php?cPath=32_34&products_id=94&osCsid=fed44d01d9246b416e19e4e695504fed
    Size        10×10 mm
    Thickness        0.5 mm
    Orientation        110-cut
    Surface quality        40/20 S/D
    Parallelism        < 2 arc min

    GaP crystal, 110-cut, 10x10x0.1 mm
    [CR-GaP-10-10-0.1]        
    http://greyhawkoptics.com/product_info.php?cPath=32_94&products_id=400&osCsid=e1c097ce6a44a8b789515a529af146bc
    Size        10x10x0.1 mm
    Orientation        110-cut
    Polish        2 faces
    Coating        no

  8. Best price guarantee!
    http://www.dmphotonics.com/BPR.htm

    Ge window, o 25.4 mm x 3 mm
    MgO-LiNbO3 wafer, Z-cut, 3"x0.5 mm, two sides polished
    UV grade Fused Silica window, 12.5×3 mm
    LiF window o 25.4 mm x 3 mm
    Axicon, UV FS, diam. 1", cone angle 160°, BBAR 400-700 nm
    Dispersion prism, UV FS, 20x20x20 mm
    Microchannel plate imaging detector MCP-GPS 25/2
    Phosphor Screen P20
    Rutile (TiO2) coupling prism, 5x5x5 mm
    Axicon, UV FS, diam. 1", cone angle 140°, BBAR 400-700 nm
    Axicon, UV FS, diam. 1", cone angle 160°, BBAR 700-1100 nm
    Axicon, UV FS, diam. 1", cone angle 170°, BBAR 400-700 nm
    Retro-Reflector, UV FS, o 25.4 mm
    Axicon, UV FS, diam. 1", cone angle 175°, BBAR 700-1000 nm
    Axicon, UV FS, diam. 1", cone angle 178°, BBAR 700-1000 nm
    UV Fused Silica Plano-Convex Lens, o 25mm, f =  300mm
    UV Fused Silica Plano-Convex Lens, o 25mm, f = 1000mm
    UV Fused Silica Plano-Convex Lens, o 25mm, f = 3000mm
    Axicon, UV FS, diam. 1", cone angle 140°, BBAR 700-1000 nm
    Axicon, UV FS, diam. 1", cone angle 160°, uncoated
    Axicon, UV FS, diam. 1", cone angle 175°, BBAR 400-700 nm
    Axicon, UV FS, diam. 1", cone angle 175°, uncoated
    Axicon, UV FS, diam. 1", cone angle 179°, BBAR 800&1064 nm
    KTP crystal, 6x6x5 mm
    LiNbO3 wafer, Z-cut, 100 mm x 1.0 mm, 2 sides polished
    LiTaO3 wafer, Z-cut, o 12 mm, 60 µm
    Microchannel Plate MCP 33-10E
    Right angle prism, UV FS, 20x20x20 mm
    UV Fused Silica Plano-Concave Lens, o 25mm, f = -150mm
    UV Fused Silica Plano-Concave Lens, o 25mm, f = -300mm
    UV Fused Silica Plano-Concave Lens, o 25mm, f = -500mm
    UV Fused Silica Plano-Convex Lens, o 25mm, f =  500mm
    UV Fused Silica Plano-Convex Lens, o 25mm, f =  750mm
    UV Fused Silica Plano-Convex Lens, o 25mm, f = 1500mm
    UV Fused Silica Plano-Convex Lens, o 25mm, f = 2000mm
    UV Fused Silica Plano-Convex Lens, o 50mm, f =  300mm
    Axicon, BK-7, diam. 1", cone angle 165°, BBAR 1000-1400 nm
    Axicon, BK-7, diam. 1", cone angle 165°, BBAR 400-700 nm
    Axicon, UV FS, diam. 1", cone angle 165°, BBAR 800&1064 nm
    Axicon, UV FS, diam. 1", cone angle 175°, BBAR 1100-1600 nm
    Axicon, UV FS, diam. 1", cone angle 175°, BBAR 800&1064 nm
    Axicon, UV FS, diam. 1", cone angle 178°, BBAR 400-700 nm
    Axicon, UV FS, diam. 1", cone angle 178°, BBAR 800&1064 nm
    Axicon, UV FS, diam. 1", cone angle 179°, BBAR 400-700 nm
    Axicon, UV FS, diam. 2", cone angle 160°, BBAR 800-1000 nm
    BaF2 window, o 25.4 mm x 6.0 mm
    BBO crystal, 6x6x0.5 mm
    Dove prism, UV FS, 10x10x40 mm
    GaP crystal, 110-cut, 10x10x0.2 mm
    GaP crystal, 110-cut, 5x5x0.1 mm
    Ge etalon, o 31.75 mm x 76.2 mm (o 1.25" x 3")
    KTP crystal, 3x3x5 mm
    LiNbO3 crystal, X-cut, 10×8.5×0.2 mm
    LiNbO3 wafer, X-cut, 3"x0.22 mm, 2 sides polished
    LiNbO3 wafer, Y/36-cut, 3"x0.5 mm, one side (+) polished
    LiNbO3 wafer, Z-cut, 1"x1.0 mm, stoichiometric
    Microchannel plate detector MCP-MA 25/2
    Microchannel plate detector MCP-MA 25/2
    Microchannel plate imaging detector MCP-IFP 25/2 CF 2 3/4" with HV power supply
    PCA: resonance frequency 1 THz, ? = 800 nm, gap distance 6 µm
    Retro-Reflector, UV FS, o 38.1 mm
    SAM 1064 nm, absorptance 2%, 1×1 mm or 1.3×1.3 mm, thck. 400 µm
    SAM 1064 nm, absorptance 2%, mounted: soldered
    SAM 1550 nm, mounted: soldered
    SAM 1550 nm, unmounted
    UV Fused Silica Plano-Concave Lens, o 25mm, f =  -50mm
    UV Fused Silica Plano-Convex Lens, o 25mm, f =  200mm
    UV Fused Silica Plano-Convex Lens, o 50mm, f =  100mm
    UV Fused Silica Plano-Convex Lens, o 50mm, f =  150mm
    UV Fused Silica Plano-Convex Lens, o 50mm, f =  200mm
    UV Fused Silica Plano-Convex Lens, o 50mm, f =  250mm
    UV Fused Silica Plano-Convex Lens, o 50mm, f = 2000mm
    UV Fused Silica Plano-Convex Lens, o 50mm, f = 3000mm
    ZnSe window, o25.4 mm, thickn. 3 mm
     

    Most viewed items:

    Rutile (TiO2) coupling prism, 5x5x5 mm
    Dispersion prism, UV FS, 20x20x20 mm
    Axicon, UV FS, diam. 1", cone angle 175°, BBAR 700-1000 nm
    Ge window, o 25.4 mm x 3 mm
    Microchannel plate detector MCP-MA 25/2
    BaF2 window, o 4" x 0.5", polished, uncoated
    Axicon, UV FS, diam. 1", cone angle 175°, uncoated
    Reef-RT
    UV grade Fused Silica window, 12.5×3 mm
    Axicon, UV FS, diam. 1", cone angle 170°, BBAR 400-700 nm
    CaF2 window, o 25.4 mm x 3.0 mm
    Axicon, UV FS, diam. 1", cone angle 179°, BBAR 800&1064 nm
    Microchannel plate detector MCP 34/2 G
    LiNbO3 wafer, Z-cut, 1"x1.0 mm, stoichiometric
    Dispersion Prism Pair, 20x20x20x12 mm
    UV Fused Silica Plano-Convex Lens, o 25mm, f =  300mm
    Microchannel plate imaging detector MCP-GPS 25/2
    Axicon, UV FS, diam. 1", cone angle 175°, BBAR 1100-1600 nm
    LiF window o 25.4 mm x 3 mm
    UV grade Fused Silica window, 25×3 mm, BBAR 400-700 nm
    UV Fused Silica Plano-Concave Lens, o 25mm, f =  -50mm
    Right angle prism, UV FS, 20x20x20 mm
    Microchannel Plate MCP 33-10E
    Dispersion prism, IR grade CaF2, 15x15x15x10 mm
    UV grade Fused Silica window, 50×5 mm
    Microchannel plate imaging detector MCP-IFP 34/2
    Axicon, UV FS, diam. 1", cone angle 140°, BBAR 400-700 nm
    Axicon, UV FS, diam. 1", cone angle 178°, BBAR 700-1000 nm
    Axicon, UV FS, diam. 1", cone angle 175°, BBAR 400-700 nm
    PCA: resonance frequency 1.5 THz, ? ~ 1040 nm, gap distance 14 µm
    Microchannel Plate MCP 25-10E
    Dispersion Prism Pair, 20x20x20 mm
    SAM 1064 nm, absorptance 2%, 1×1 mm or 1.3×1.3 mm, thck. 400 µm
    UV grade Fused Silica window,  6×3 mm
    Microchannel plate imaging detector MCP-GPS 34/2
    UV grade Fused Silica window, 25×3 mm
    LiNbO3 wafer, Z-cut, 100 mm x 1.0 mm, 2 sides polished
    Axicon, UV FS, diam. 1", cone angle 160°, uncoated
    Dispersion Prism, 20x20x20x12 mm
    UV grade Fused Silica window, 25×3 mm, AR 1100-1600 nm
    C, C++, C# programming, hourly rate
    Diffractive Variable Attenuator, 1064 nm
    UV Fused Silica Plano-Convex Lens, o 12.7mm
    Diffractive Variable Attenuator, 532 nm
    Diffractive Variable Attenuator, 800 nm
    Microchannel plate imaging detector MCP-IFP 25/2
    Dove prism, UV FS, 20x20x82 mm
    ZnSe window, o25.4 mm, thickn. 3 mm
    Microchannel plate detector MCP-MA 25/2
    Microchannel plate detector MCP-MA 25/2
    Dispersion prism, BK-7, 20x20x20 mm
    BaF2 window, o 12.7 mm x 2.0 mm
    PCA: resonance frequency 1.5 THz, ? ~ 1040 nm, gap distance 14 µm
    PCA: resonance frequency 1.5 THz, ? ~ 1040 nm, gap distance 10 µm
    Ti:Sapphire crystal, 5×5 mm
    CaF2 window, o 40 mm x 7.0 mm
    LiNbO3 crystal, X-cut, 6x6x30 mm
    PCA: resonance frequency 1.5 THz, ? ~ 1040 nm, gap distance 10 µm
    LiTaO3 crystal, Z-cut, 25×25 mm, 100 µm
    Dove prism, BK-7, 10x10x40 mm
    Ge window, o 38.1 mm x 4 mm
    LiTaO3 wafer, Z-cut, o 12 mm, 60 µm
    LiF window o  8.7 mm x 3 mm
    Si window, o 25.4 mm x 3 mm
    Axicon, UV FS, diam. 1", cone angle 170°, uncoated
    SAM 1064 nm, absorptance 2%, mounted: soldered
    LiNbO3 wafer, Y/36-cut, 3"x0.5 mm, one side (+) polished
    PCA: resonance frequency 1 THz, ? ~ 1040 nm, gap distance 16 µm
    Axicon, BK-7, diam. 1", cone angle 175°, uncoated
    LabView programming, hourly rate
    PCA: resonance frequency 1 THz, ? ~ 1040 nm, gap distance 34 µm
    UV Fused Silica Plano-Convex Lens, o 50mm, f =  300mm
    PCA: resonance frequency 1 THz, ? ~ 1040 nm, gap distance 34 µm
    SAM 1550 nm, mounted: cable
    Right angle prism, BK-7, 20x20x20 mm
    PCA: resonance frequency 1 THz, ? ~ 1040 nm, gap distance 16 µm
    UV Fused Silica Plano-Convex Lens, o 50mm, f =  150mm
    PCA: resonance frequency 1 THz, ? = 800 nm, gap distance 16 µm
    BaF2 window, o 15.0 mm x 4.0 mm
    LiF window o 16.4 mm x 6 mm
    .NET programming, hourly rate
    CaF2 window, o 50.8 mm x 3.0 mm
    Axicon, UV FS, diam. 1", cone angle 160°, BBAR 700-1100 nm
    Visual Basic programming, hourly rate
    PCA: resonance frequency 1 THz, ? = 800 nm, gap distance 6 µm
    Retro-Reflector, UV FS, o 25.4 mm, BBAR 400-700 nm
    ZnSe monocrystal, 5x5x10 mm
    ZnSe window, o12.7 mm, thickn. 1 mm
    BaF2 window, o 25.4 mm x 6.0 mm
    Axicon, UV FS, diam. 1", cone angle 160°, BBAR 400-700 nm
    Right angle prism, UV FS, 10x10x10 mm
    LiF window o 10 mm x 3.5 mm
    UV Fused Silica Plano-Convex Lens, o 50mm, f = 2000mm
    SAM 1550 nm, mounted: soldered
    PCA: resonance frequency 1 THz, ? ~ 1040 nm, gap distance 6 µm
    PCA: resonance frequency 1.5 THz, ? = 800 nm, gap distance 10 µm
    UV Fused Silica Plano-Concave Lens, o 40mm, f = -100mm
    UV Fused Silica Plano-Convex Lens, o 25mm, f = 1000mm
    LiNbO3 wafer, X-cut, 3"x0.22 mm, 2 sides polished
    UV Fused Silica Plano-Concave Lens, o 25mm, f = -500mm

Comments are closed.